Regression Models for Ordinal Data: A Machine Learning Approach

نویسندگان

  • Ralf Herbrich
  • Thore Graepel
  • Klaus Obermayer
چکیده

In contrast to the standard machine learning tasks of classification and metric regression we investigate the problem of predicting variables of ordinal scale, a setting referred to as ordinal regression. The task of ordinal regression arises frequently in the social sciences and in information retrieval where human preferences play a major role. Also many multi–class problems are really problems of ordinal regression due to an ordering of the classes. Although the problem is rather novel to the Machine Learning Community it has been widely considered in Statistics before. All the statistical methods rely on a probability model of a latent (unobserved) variable and on the condition of stochastic ordering. In this paper we develop a distribution independent formulation of the problem and give uniform bounds for our risk functional. The main difference to classification is the restriction that the mapping of objects to ranks must be transitive and asymmetric. Combining our theoretical framework with results from measurement theory we present an approach that is based on a mapping from objects to scalar utility values and thus guarantees transitivity and asymmetry. Applying the principle of Structural Risk Minimization as employed in Support Vector Machines we derive a new learning algorithm based on large margin rank boundaries for the task of ordinal regression. Our method is easily extended to nonlinear utility functions. We give experimental results for an Information Retrieval task of learning the order of documents with respect to an initial query. Moreover, we show that our algorithm outperforms more naive approaches to ordinal regression such as Support Vector Classification and Support Vector Regression in the case of more than two ranks. 1This paper is a preliminary version of (Herbrich et al. 1999)

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Support Vector Learning for Ordinal Regression

We investigate the problem of predicting variables of ordinal scale. This taks is referred to as ordinal regression and is complementary to the standard machine learning tasks of classification and metric regression. In contrast to statistical models we present a distribution independent formulation of the problem together with uniform bounds of the risk functional. The approach presented is ba...

متن کامل

Machine Learning Models for Housing Prices Forecasting using Registration Data

This article has been compiled to identify the best model of housing price forecasting using machine learning methods with maximum accuracy and minimum error. Five important machine learning algorithms are used to predict housing prices, including Nearest Neighbor Regression Algorithm (KNNR), Support Vector Regression Algorithm (SVR), Random Forest Regression Algorithm (RFR), Extreme Gradient B...

متن کامل

Regression Models for Ordinal Data : AMachine Learning

In contrast to the standard machine learning tasks of classi cation and metric regression we investigate the problem of predicting variables of ordinal scale, a setting referred to as ordinal regression. The task of ordinal regression arises frequently in the social sciences and in information retrieval where human preferences play a major role. Also many multi{class problems are really problem...

متن کامل

Gaussian Processes for Ordinal Regression

We present a probabilistic kernel approach to ordinal regression based on Gaussian processes. A threshold model that generalizes the probit function is used as the likelihood function for ordinal variables. Two inference techniques, based on the Laplace approximation and the expectation propagation algorithm respectively, are derived for hyperparameter learning and model selection. We compare t...

متن کامل

Learning Transformation Models for Ranking and Survival Analysis

This paper studies the task of learning transformation models for ranking problems, ordinal regression and survival analysis. The present contribution describes a machine learning approach termed MINLIP. The key insight is to relate ranking criteria as the Area Under the Curve to monotone transformation functions. Consequently, the notion of a Lipschitz smoothness constant is found to be useful...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999